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Abstract

Nitrendipine is an effective and safe calcium-channel blocker for the treatment of mild to moderate hypertension.
The aim of this study is to show that an artificial neural network (ANN) model of the relationship between ni-
trendipine plasma levels and pharmacodynamic effects can be built and used for pressure-drop prediction after oral
administration of the drug in spite of the poor correlation between plasma concentrations and the effect. To achieve
the goal, the following steps were taken: evaluation of the quality of the database for training the ANN, definition of
the optimal input set for the ANN, and prediction of the diastolic pressure drop using the ANN. The possible conse-
quences of successful ANN modelling are an optimisation of the drug administration regimen, to achieve the best
possible effect, as well as optimal drug formulation for drugs with complicated pharmacokinetic/pharmacodynamic
relationships.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Nitrendipine [1–4] is a long-acting calcium channel blocker that possesses both peripheral and coronary
vasodiletary properties. It inhibits the movement of calcium through the channels of cardiac and vascular
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URL: http://msc.fe.uni-lj.si/.

0010-4825/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiomed.2004.07.006

http://www.intl.elsevierhealth.com/journals/cobm
mailto:ales.belic@fe.uni-lj.si
http://msc.fe.uni-lj.si/


A. Belič et al. / Computers in Biology and Medicine 35 (2005) 892–904 893

muscle that results in peripheral vasodiletation and leads to elevated blood pressure. Nitrendipine 20 mg,
administered as a single oral dose to mild-to-moderate hypertensive patients at rest, produced a 15–20%
reduction in the mean arterial pressure, the systolic pressure, and the diastolic pressure within 2 h of
being administered. However, the blood pressure response to oral nitrendipine administration does not
correlate well with detectable serum concentrations. Presumably, the anti-hypertensive effect of the drug
is better correlated with its activity at the calcium channel [5,6] than its concentration in the plasma.
After peroral application, nitrendipine is rapidly and completely absorbed in portal blood, while in the
liver it is subjected to extensive presystemic metabolism, the consequence of which is an approximately
25% absorption into the systemic blood circulation. The absolute bioavailability does not depend on the
size of the administered dose and on its release rate, which is manifested in linear kinetics. It has been
demonstrated that no saturation of the liver enzymes occurs with doses of 5–40 mg. The biological half-
life of nitrendipine is about 12 h (range 2–24 hours). Although nitrendipine is a well-established drug that
has been used for more than 15 years, studies to evaluate its therapeutic effects are still taking place [7].

It is well known that blood pressure is influenced by the physicochemical and psychological states
of an organism as well as by its surroundings. Therefore, it is difficult to investigate the effects of a
single influence on a change in blood pressure, because all the other influences cannot be controlled or
measured. The aim of this study is to show that a model of the relationship between nitrendipine plasma
levels and pharmacodynamic effects can be composed and used for predicting the drop in blood pressure
after oral administration. Raised systolic and diastolic blood pressure have destructive effects on the
cardio-vascular system; however, diastolic pressure is more dangerous to health. The most desired effect
of hypertensia treatment is, therefore, to lower the diastolic pressure. The correlation between nitrendipine
plasma levels and diastolic pressure dynamics also seems better than the correlation with systolic blood
pressure. Therefore, only the diastolic blood pressure was predicted using an artificial neural network
(ANN). Although, ANNs were traditionally used for pattern recognition problems, some references can
be found that report of function approximations using ANN [8].

To achieve the goal, the following steps are needed:

• An evaluation of the database quality for training the ANN,
• a definition of the optimal input set for the ANN,
• a prediction of the diastolic pressure drop with the ANN.

Statistical methods were used to evaluate the database quality for the ANN training and to define the
optimal input set for the ANN. The ANN training curve of the different input sets also served as an optimal
input-set selector. The relationship between the nitrendipine plasma levels and the pharmacodynamic
effect was modelled using the ANN.

2. Modelling of the relationship between the nitrendipine plasma profiles and its effect

In order to investigate the relationship between the nitrendipine plasma profiles and its effect, the
so-called pharmacokinetic-pharmacodynamic (PK-PD) relation, a compartment model was built [9]. The
study described in [9] showed that there are substantial similarities in time courses of levels of nitrendipine
in hidden-deep compartment and the effect. The structure of the compartment model indicated that a
hidden-deep compartment could simulate the dynamics of the drug in calcium channels. Therefore, the
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Fig. 1. Input–output structure of the ANN model.

link between the deep compartment and the effect is understandable, and the consequence is that the plasma
levels and the effect must be closely correlated too. However, it is possible that this cannot established
using linear correlation and regression, since the relationship is unlikely to be linear. Therefore, ANNs
were used to model the relationship between the nitrendipine plasma concentrations and their effect (see
Fig. 1), since the exact mechanisms that cause nitrendipine effects are not fully understood.

2.1. Database

Large databases of 1000–10 000 samples are usually required for successful ANN training. Such large
studies are usually not available in human medicine. However, studies with an ANN have been reported
where an outcome was successfully predicted from a relatively small bio-medical database [10]. Smaller
databases, however, decrease a reliability of an ANN model prediction.

In our example of ANN training, a data set from a bioequivalence study of 20-mg nitrendipine
immediate-release tablets was applied to examine the PK-PD correlation. A bioequivalence study was
designed to compare the pharmacokinetic properties of two tablets, usually from different pharmaceutical
companies, that have the same substance but a different formulation. Bioequivalent drugs can thus be
treated as equally effective. In our bioequivalence study, tablets from pharmaceutical companies B and
K were tested. The study was a single-dose, blind, randomised, four-way crossover with two treatments
given in a replicate design (AABB) to 40 healthy volunteers. Blood samples were taken 0.5, 1, 1.5, 2, 2.5,
3, 4, 6, and 8 h after administration. Besides nitrendipine blood-level monitoring, systolic and diastolic
blood pressure before, and 3 hours after, administration were determined in addition to the following of
adverse events in terms of event sign, onset, duration and intensity. In total, data on 160 drug applications
were included in the study.

2.2. Database evaluation

To ensure the credibility of the ANN prediction, the quality of the database must be evaluated first.
The elimination of duplicate information carried by database items is a helpful step. These items can be
compressed into a single parameter, thus simplifying the ANNs structure and improving the quality of the
prediction. The large number of parameters of artificial intelligence (AI) models means that AI models
can be successful interpolators of data; however, they are usually poor extrapolators. Therefore, when
applying AI methods for modelling, the databases should be as evenly spread throughout the problem
space as possible, to ensure that as many as possible situations were encountered during the study. The
number of subjects having statistically unusual values of the measured parameters can be a good estimate
of the database’s homogeneity [11]. Therefore, the database was statistically tested for outlying subjects,
considering blood pressure and nitrendipine concentration profiles for each group of four applications.
The analysis was performed in MATLAB [12] using two different methods. First, standard statistics was
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applied by estimating the median values of the measured quantities and intervals containing a half of all the
subjects, a quarter above and a quarter below the median. The outliers were all subjects that were outside
3/2 of the interval [11]. At the same time the database was analysed using linear principal component
analysis (PCA) [13]. The basic idea of PCA is to transform the base of the space in which the subjects are
defined, to a more natural space base for the problem, and then to reduce the dimensionality by eliminating,
wherever possible, nonessential dimensions. The transformations include translation and rotation of the
original Cartesian coordinate system, which is defined by measured quantities of the subjects. The new
space base is defined by eigenvectors of the covariance matrix of the measured properties. The eigenvectors
whose variances are arbitrarily small compared to the sum of the remaining variances can be omitted. The
outliers were determined in new coordinates by calculating the Hotteling distance [11] of the subjects
from the centre of the new coordinate system.All the subjects whose distance from the centre was extreme
were determined as outliers.

2.3. Artificial neural networks (ANN)

To model the relationship between the pharmacokinetic data and the effect of the drug, a perceptron
neural network was used [14] with error back-propagation as the learning algorithm. In our case a four-
layer ANN was configured as follows:

• 1st layer: 4–10 neurons (depending on the number of inputs),
• 2nd layer: 15–20 neurons (depending on the number of inputs),
• 3rd layer: 10–20 neurons (depending on the number of inputs),
• 4th layer: 1 neuron (output—the difference in diastolic pressure).

Three types of inputs were used: the primary pharmacokinetic parameters (AUC, the integral of the
concentration vs. time curve over the time interval [0 h,8 h]; Cmax, the maximal concentration; tmax, the
time at maximal concentration; �, the terminal slope of the concentration vs. time curve calculated from
the last three measured points); the measured concentrations; and the measured concentrations mixed
with primary pharmacokinetic parameters. The process of learning was monitored via the root mean
squared (RMS) error between the measured and the ANN prediction of the diastolic pressure change. A
monotonically decreasing RMS error curve between the learning cycles indicates a satisfactory learning
process. If the learning process does not proceed satisfactorily, either the learning method or the ANN
structure is not correct for the proposed problem, or there is only a weak connection between the input
and the output of the system. Cheshire Neuralyst ver.1.41 [15], add-on software for Microsoft Excel, was
used for the ANN building and training. The database was divided into training and evaluation sets: 75%
of the database was used as the training set, and the remainder was used as the evaluation set.

Two goals can be achieved with the ANN. To establish if there is a relationship between the plasma
concentrations and the diastolic pressure change, and, if that is true, to establish which are the most
significant inputs for predicting the diastolic pressure drop. Both of these can be assessed from observing
the RMS error curve. If there is no relationship between the input and the output, the value of the RMS
error curve will not decrease during the ANN training. If there is a relationship but the inputs are poorly
selected, the RMS error curve experiences oscillations; however, the general tendency of decreasing is
significant. Finally, by successfully achieving the first two goals, diastolic pressure drops can be predicted
reasonably well.
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2.4. Statistical estimation of input significance

Input significance was estimated using the ANN as well as with three methods of selection based
on statistical evaluations of the input and output data (linear regression and correlation coefficients)
[16].

The first method was based on a linear-regression model between the output and the inputs. The database
was divided into learning and validation sets. A linear regression model was estimated on the learning set
for all inputs and then the input that most decreased or least increased the prediction error of the model
was omitted. The whole procedure was repeated until only one input remained [16]. The remaining input
is the most significant and the first omitted input is the least important.

The second method involved a calculation of the correlation coefficients between each input and output.
All inputs and outputs were first scaled to variance 1. Then in a stepwise procedure the input with the
highest absolute value of correlation coefficient was omitted and its effect subtracted from the output.
The first omitted input has the highest relevance to the output [16].

In the third method, correlation coefficients were calculated and inputs sorted according to absolute
values of the correlation coefficients. The highest coefficient value signifies the highest relevance of input
[16].

3. Results and discussion

3.1. Database quality

Blood-pressure data was tested for outliers using the two mentioned methods. The first one showed
that the database was very compact and that only a few subjects could be omitted. However, there
are differences between the tablets supplied by the two companies. The effects of the B tablets were
statistically more consistent (see Fig. 2) and two subjects could be uniquely identified as outliers. On the
other hand, for the K tablets, four different outliers could be identified (see Fig. 2), and only one of these
was the same as for the B tablets. After the B applications, subjects 22 and 25 were distinct outliers. After
the K applications there were no distinct outliers; however, 12, 13, 18 and 22 lay outside the interval. All
the outliers were identified for systolic pressure, and so, this had little effect on database quality regarding
the diastolic pressure.

The pressure data were also examined using PCA. Since there were differences between the B and K
tablets, the database was divided in two parts. Each subject was described by eight dimensions (diastolic
and systolic pressure before and after application and each tablet applied twice). After the transformation
of the coordinates using PCA, six of the eight dimensions remained significant for both tablets. By
calculating the Hotteling distance from the centre of the new coordinate system for all the subjects (see
Fig. 3), the results provided the same conclusion as in the first test.

The outlier in the B application is still 22, this time accompanied by 18 and 26, and after the K
application there are no distinct outliers (see Fig. 3). Thus, for the case of blood pressure the database is
suitable for ANN training.

The concentration data were also tested for outliers. The database was again divided into two groups
depending on the application (B or K). Each subject was defined in 18-dimensional space (each measure-
ment of concentration represented one dimension and each tablet applied twice). The concentrations at
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Fig. 2. Estimation of outliers in the blood-pressure set for all subjects differed by different company tablet applications (B and
K).
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Fig. 3. Estimation of outliers in the blood-pressure set for all subjects for applications of K (a) and B (b) after principal component
analysis.

10 and 12 h were omitted because these measurements were not available for all the subjects. The first
method showed a number of outliers for both tablets (see Fig. 4); however, no subject dominated.

PCA showed that after transformation, 90% of the data variance could be described with only four com-
ponents. Thus, the 18-dimensional space could be reduced to 4-dimensional space without any significant
loss of information (see Fig. 5).

After calculating the Hotteling distance no significant outlier could be found for either tablet (see Fig.
6). Therefore, it could be stated that the concentration data are equally spread throughout the problem
space. It could be concluded that the database was homogeneous enough and all the subjects could be used
for ANN building and training. Furthermore, the two tablets were statistically not significantly different
and, therefore, the database could be used as a whole.
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Fig. 4. Estimation of outliers in the concentration set for all subjects for applications of K (a) and B (b).
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Fig. 5. Variance of components for the applications of K (a) and B (b) after PCA application.
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Fig. 6. Estimation of outliers in the concentration set of all subjects for applications of K (a) and B (b) using PCA.

3.2. Optimal ANN input set

As suggested by the preliminary test with the ANN, some relationship between the plasma concen-
trations exists, and a further evaluation of the ANN structure should be made. By testing the quality
of the database it became clear that the dimension of the problem could be reduced, especially in the
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Fig. 7. Estimating optimal input set for anANN from concentration raw data: (a) concentration samples up to 8 h, (b) concentration
samples up to 6 h, (c) concentration samples up to 4 h, (d) concentration samples up to 3 h, (e) concentration samples up to 2.5 h,
(f) concentration samples up to 2 h, (g) concentration samples up to 1.5 h (in all cases diastolic pressure before drug administration
was added as input).

case of concentrations. Thus, an optimal input set could be found to achieve faster ANN training and a
less complicated structure. Two methods were applied: first, the process of training was observed; and
second, the statistical analysis was carried out. Measured concentration values were used as the inputs
and diastolic pressure changes as the output of the ANN. However, no significant relationship between
the plasma concentrations and the diastolic pressure changes could be found unless the diastolic pressure
before the drug application was included as one of the inputs. Training of the ANN provided the results
shown in Figs. 7 and 8. The training procedure was set to 3000 epochs and was repeated 50 times with
similar results.

As can be seen from Fig. 7, the best training is achieved with structures c and d. If more concentration
points are used, there are problems with the training (oscillations). If fewer concentration points are taken
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Fig. 8. Estimating the optimal input set for an ANN from mixed data sets (raw concentrations and primary pharmacokinetic
parameters): (a) concentrations at 2, 3, 4, and 6 h plus Cmax, (b) concentrations at 2, 3, 4, and 6 h plus Cmax, AUC, (c) concen-
trations at 2 and 3 plus Cmax, AUC, (d) concentrations at 0.5, 1, and 1.5 h plus AUC, �, (e) concentrations at 0.5, 1, and 1.5 h
plus AUC, (f) concentrations up to 3 h (in all cases diastolic pressure before drug administration was added as an input).

as inputs, training stops at a higher RMS error, and some training problems are observed (f). In case d
there are also some minor oscillations in the RMS error curve; however, at the end of the training the curve
monotonically decreases, which makes the oscillations less important. Oscillations in the error curve can
also be a consequence of the over-learning phenomenon. Therefore, an optimal input set is chosen to be
as follows: concentrations up to 3 h and diastolic pressure before drug administration. The choice seemed
logical, since the second pressure measurement was performed 3 h after the administration, and later
concentrations could not have had any effect.

However, in bioequivalence studies, concentration profiles are compressed into AUC, Cmax, tmax, and
� to be compared. Thus, these parameters were also used as the inputs into the ANN. The results of the
training were much worse than with the raw concentrations as inputs. Therefore, a combination of raw
concentrations and primary pharmacokinetic parameters was used as an input. As can be seen in Fig. 8
the training was less successful than with the raw concentrations.

Statistical methods were also applied in the case of the optimal input-set search. The three referenced
methods provide more or less the same results as the ANN training (see Table 1). Raw concentrations are
better correlated with the diastolic pressure drop than the primary pharmacokinetic parameters.

The proposed three input sets were also tested using the ANN; however, the input set estimated by the
ANN resulted in better ANN training.
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Table 1
Most correlated parameters of plasma concentration measurements with diastolic pressure drop

Inputs

Method1 dp0h dp3h C2h C2.5h C1h C8h Cmax
Method2 dp0h C2h C1h C4h � C3h C0.5h
Method3 dp0h dp3h C2h C4h C3h C6h Cmax

Since the problem is highly nonlinear it is surprising that linear statistical methods and theANN provide
such similar optimal input sets.

3.3. Prediction of diastolic pressure using the ANN

The relationship between the plasma concentrations and the diastolic pressure changes was predicted
using the ANN. The ANN was trained many times with the selected optimal input structure. The results
varied between different trainings, and the successful prediction of the diastolic pressure was 88–94%.
That means that in 88–94% of subjects in the evaluation set the prediction of the ANN was within 10% of
the actual pressure change. To enhance the reliability, the output of the neural network was modified to
perform a “class” response. The terms “no change”, “minor change”, “significant change”, “big change”
and “very big change” were introduced. The clustering into proposed categories proved to be a very good
and natural solution for the problem, since the prediction accuracy on the evaluation set varied from 95%
to 98%. The results obtained with the ANN prediction compared with measured data for the evaluation
set are presented in Table 2.

4. Summary

The use of a nonlinear statistical description of a dynamical system, such as an ANN, requires certain
procedures to ensure the credibility of the predicted outcome:

• Database evaluation is the most important procedure prior to ANN training. The basis for the ANN
model consists solely of data collected in the database; therefore, any anomaly in the database will
have a direct influence on the ANN structure and parameters. The database must be spread as equally
as possible through the problem space, whose dimensions are defined by the number of items in the
database. Furthermore, successful model prediction is expected in the region of the problem space
where the models can interpolate measured data; prediction with extrapolation is not reliable.

• The choice of an optimal input set is important for ANN structure optimisation. In general, the number
of inputs to the ANN can be as large as the number of items in the database; however, some items can
carry similar information. Therefore, only one of them or their combination used as an input provides
the same amount of information as all of them. The reduction of the input set results in a simplified
ANN structure as well as more reliable prediction.

• The prediction of the outcome, in this case the drop in the diastolic pressure, is reliable only when
both prior steps were carefully taken.
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Table 2
Estimation of diastolic pressure difference

Sample Measured Estimated Sample Measured Estimated
difference diastolic difference diastolic
in diastolic pressure in diastolic pressure
pressure difference pressure difference

1 3,588908 3,6012 18 3,027784 3,1025
2 3,955375 4,0718 19 −0,09858 −0,1292
3 21,17384 21,4529 20 4,515117 4,5348
4 16,20321 16,2892 21 2,195294 2,2358
5 6,571617 6,5943 22 −1,50872 −1,5960
6 5,136759 5,1781 23 2,62364 2,7074
7 1,615231 1,6022 24 −0,3926 −0,4756
8 12,00834 12,0365 25 7,19115 7,2343
9 4,019229 4,0685 26 7,731962 7,7816
10 0,46792 0,4213 27 4,620182 4,6438
11 1,155107 1,3248 28 9,168842 9,1826
12 8,846901 8,8771 29 7,302544 7,4275
13 0,45182 0,5303 30 13,54449 13,6080
14 11,22608 11,2777 31 5,685198 5,7631
15 8,680601 8,6947 32 4,247672 4,2617
16 0,277871 0,2001 33 2,346256 2,3415
17 13,9208 13,9869

The study shows that it is possible to predict a diastolic pressure drop with an ANN from a rela-
tively small database if the procedures above are correspondingly applied. To solve this highly nonlinear
problem, an ANN as well as linear statistical methods are necessary. Linear statistics are useful for char-
acterising the general properties of the system, whereas the ANN explores the details. Therefore, the
two methods can be characterised as complementary. No optimisation of the ANN structure, other than
optimal input selection, was performed. Therefore, it should be possible to optimise the ANNs training
and prediction quality.

The possible consequences of a successful ANN model are an optimisation of the drug administration
regimen, to achieve the best possible effect, as well as optimal drug formulation design. However, when
the plasma profiles are not well correlated with the effect, such optimisation cannot always achieve the
goal of best possible effect with the least possible number of adverse effects. Mechanistic PD models
would be preferred, since they provide better extrapolation possibilities; however, there is still a big gap
between the sites of a drug’s action and its activity in producing an effect.
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